Re-designing the Input Pipeline in Interactive Systems

Duration: 36 months
Team: Loki (Inria centre at the University of Lille & CRISTAL, University of Lille)
Supervisors: Géry Casiez & Mathieu Nancel (gery.casiez@univ-lille.fr, mathieu.nancel@inria.fr)
Application deadline: 30/04/2023

The Loki research group is looking for a PhD student starting fall 2023.

Context
Routine tasks such as controlling a system cursor or moving a virtual camera involve continuous visuo-motor control from the user, to which the system has to respond accurately and with minimal latency. Modern Human-Computer Interfaces use multi-step input pipelines between the user's movements and the system's feedback that are frequently opaque. Each of these steps (sensing, filtering, transforming, predicting, etc.) strongly affects the next, as well as the pipeline's outcome. And yet, many of them are designed in isolation and calibrated by trial and error using legacy or ad-hoc approaches, or limited knowledge of the underlying psychomotor phenomena. This limits user performance and experience in everyday computer use, and hinders the design and adoption of new devices and sensing methods.

Objectives
This Ph.D. will explore and address the knowledge gaps in the design of continuous input pipelines: in the way we design their steps, but also in our understanding of how users perceive, decide, and act in these real-time tasks. It will involve methods and tools from HCI, experimental psychology, machine learning, or control theory. The goal is to discover and establish generalizable guidelines, methods and algorithms to build input pipelines whose steps can fit and adapt to any user, system, or device.

This is a vast topic that can take any or all of the following paths, depending on the interests of the candidate:

Sensing / hardware / fine motor actions:
New and existing sensing devices can be investigated to improve the user's degree of control, with different form factors or sensing characteristics better adapted to the task and context. This could involve exploring the effects of friction on classic touch devices like touch-pads or touch-screens, or designing new input methods based on Optical Finger Navigation (OFN) modules that can be used in a variety of mobile context, including Mixed Reality for which prolonged use of mid-air gestures can be tiring and imprecise.

Typical input devices such as mice and touch-pads express displacements in unitless *counts* or *mickeys*, or finger pressure in ad-hoc units, which do not convey the actual scale of user movements and therefore make it harder to exploit them optimally in the next steps of the input pipeline. One approach is to design better event protocols and standards to include this information, another is to develop methods to retrieve it automatically by using machine learning approaches to infer, e.g., the resolution of a mouse using only the unitless events that it emits.

Input filtering / signal processing:
Raw input data needs to be processed to become usable in a UI. It is often noisy, and prone to sensing or timing inaccuracies that can strongly affect the quality of the system's response. On the other hand, filtering methods often introduce latency in the pipeline, which is also detrimental to performance even when users do not notice it (see related work [3, 8]). Our team developed the 1-euro filter [5] which has become a standard in research and industry [https://gery.casiez.net/1euro/], based on the observation that the effects of input noise become less noticeable at high speeds. Its parameters are currently tuned by hand, however, so the next stage in this direction could consist in acquiring a better understanding on the perception and characterization of motion noise in order to assist or automatize the tuning of this filter. Other venues for research can include developing faster methods to infer the user's instant velocity in real time from noisy displacement and timing data, without adding delay, based on previous results by our research group [7].

Inferring / transforming:
End-to-end latency in the input pipeline derives mostly from the display side [2, 3] which is generally irreducible in a given system. A promising approach consists in predicting the near future of the user's ongoing movements in order to...
display the system's response to its expected current location rather than to the last sensed location. Our research group has developed one such predictor [7] and there are many ways to develop this topic further. One is to improve existing predictors using better models of movement, another is to characterize the expected errors of a predictor in order to adapt the visual feedback to the system's confidence [8].

Once processed, input events are generally transformed by a transfer function [4, 6] at the system level before being sent to graphics libraries as exploitable “MouseEvents”. These functions help adapt the unitless input events to the size and resolution of the display, and can improve performance and usability on certain tasks. However, the design and tuning of these functions remains poorly understood and ad-hoc. A possible venue for this PhD is to explore new methods to help interaction designers choose and tune these functions based on functional models [1] that can take into account the specific capabilities of the user and of the system, and the task at hand.

At a higher perspective, the knowledge gained on these topics will be used to help to redesign the input pipeline in current interactive systems.

The two supervisors have recognized expertise at the international level on these topics with papers published in leading conferences of the domain. The avenues of research described above expand beyond one thesis so the specific topics covered by the candidate will be tailored based on preference and profile.

Location

The PhD candidate will join the LOKI research group, based in the Inria centre at the University of Lille, located in the Lille area. Lille is at the northern tip of France and its metropolitan area, situated at the crossroads of northern continental Europe, is the 5th biggest in France.

Loki is a dynamic and multicultural team with members coming from different countries (Germany, Colombia, Canada, China, France, etc.) and communicating daily in English.

The candidate

A successful candidate must hold a MSc in Human-Computer Interaction, Computer Science or Control Theory and show a great interest in performing high quality research. The candidate must demonstrate experience or strong interest in software development. Creativity, independence, team working and communication skills are valuable advantages. It is not required to speak French. A good level of technical and scientific English is also a plus. If interested in this project, simply e-mail Géry Casiez (gery.casiez@univ-lille.fr) and Mathieu Nancel (mathieu.nancel@inria.fr).

References


